Estimating geomechanical parameters from microseismic plane focal mechanisms recorded during multistage hydraulic fracturing

Author:

Kuang Wenhuan1,Zoback Mark2,Zhang Jie3

Affiliation:

1. Formerly Stanford University, Department of Geophysics, Stanford, California, USA; presently University of Science and Technology of China, Geophysical Research Institute, Hefei, China..

2. Stanford University, Department of Geophysics, Stanford, California, USA..

3. University of Science and Technology of China, Geophysical Research Institute, Hefei, China..

Abstract

We extend a full-waveform modeling method to invert source focal-plane mechanisms for microseismic data recorded with dual-borehole seismic arrays. Combining inverted focal-plane mechanisms with geomechanics knowledge, we map the pore pressure distribution in the reservoir. Determining focal mechanisms for microseismic events is challenging due to poor geometry coverage. We use the P-wave polarities, the P- and S-wave similarities, the SV/P amplitude ratio, and the SH/P amplitude ratio to invert the focal-plane mechanisms. A synthetic study proves that this method can effectively resolve focal mechanisms with dual-array geometry. We apply this method to 47 relatively large events recorded during a hydraulic fracturing operation in the Barnett Shale. The focal mechanisms are used to invert for the orientation and relative magnitudes of the principal stress axes, the orientation of the planes slipping in shear, and the approximate pore pressure perturbation that caused the slip. The analysis of the focal mechanisms consistently shows a normal faulting stress state with the maximum principal stress near vertical, the maximum horizontal stress near horizontal at an azimuth of N60°E, and the minimum horizontal stress near horizontal at an azimuth of S30°E. We propose a general method that can be used to obtain microseismic focal-plane mechanisms and use them to improve the geomechanical understanding of the stimulation process during multistage hydraulic fracturing.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3