Integrated VTI model building with seismic data, geologic information, and rock-physics modeling — Part 2: Field data test

Author:

Li Yunyue1,Biondi Biondo2,Clapp Robert2,Nichols Dave3

Affiliation:

1. Formerly Stanford University, Stanford, California, USA; presently Massachusetts Institute of Technology, Cambridge, Massachusetts, USA..

2. Stanford University, Department of Geophysics, Stanford, California, USA..

3. Schlumberger, Houston, Texas, USA..

Abstract

Velocity model building is the first step of seismic inversion and the foundation of the subsequent processing and interpretation workflow. Velocity model building from surface seismic data only becomes severely underdetermined and nonunique when more than one parameter is needed to characterize the velocity anisotropy. The traditional seismic processing workflow sequentially performs seismic velocity model building, structural imaging/interpretation, and lithologic inversion, modifying the subsurface model in each step without verifications against the previously used data. We have developed an integrated model building scheme that uses all available information: seismic data, geologic structural information, well logs, and rock-physics knowledge. We have evaluated the accuracy of the anisotropic model in the image space, in which structural information is estimated. The lithologic inversion results from well logs and the dynamic seismic information (amplitude versus angle) are also fed back to the kinematic seismic inversion via a cross-parameter covariance matrix, which is a multivariate Gaussian approximation to the numerical distribution modeled from stochastic rock-physics modeling. The procedure of building the rock-physics prior information and the improvements using these extra constraints were tested on a Gulf of Mexico data set. The inverted vertical transverse isotropic model not only better focused the seismic image, but it also satisfied the geologic and rock-physics principles.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3