Estimation of rock frame weakening using time-lapse crosswell: The Frio brine pilot project

Author:

Al Hosni Mohammed1,Vialle Stéphanie1,Gurevich Boris2,Daley Thomas M.3

Affiliation:

1. Curtin University, Perth, Australia and Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Ltd., Canberra, Australia..

2. Curtin University, Perth, Australia and Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Ltd. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia..

3. Lawrence Berkeley National Laboratory, Berkeley, California, USA..

Abstract

[Formula: see text] injection into subsurface reservoirs leads to pressure and saturation changes. Furthermore, [Formula: see text]-brine-minerals interaction could result in dissolution or reprecipitation of rock frame-forming minerals. Observed time-lapse seismic associated with [Formula: see text] injection into poorly consolidated sandstone at the Frio [Formula: see text] injection site (Texas, USA) could not be predicted using classical rock-physics models (i.e., models involving elastic changes in the rock frame due to saturations and/or pressures changes only, and assuming no changes in the rock microstructure). That, and the changes in the fluid chemistry after [Formula: see text] injection, suggests that the assumption of a constant rock microstructure might be violated. Using high-resolution time-lapse crosswell data, we have developed a methodology for estimating changes in the rock frame by quantifying the rock-frame drained moduli before and after [Formula: see text] injection. Based on rock microstructure diagnostics, we found that the changes in the drained frame elastic properties are due to the changes in the grain contact-cement percentage. The reduction in contact-cement percent is found to be variable throughout the reservoir, with a maximum near the injection well, down to 0.01% from the initial 0.1% contact cement; this results in more than 40% reduction in the drained frame shear and bulk moduli. [Formula: see text] saturation was estimated using this model for uniform and patchy saturation cases. Our rock-physics analysis may allow improved interpretation of time-lapse seismic for [Formula: see text] saturation in the context of other poorly consolidated sandstones with similar geomechanical properties. Having the P- and S-wave velocity time-lapse data is key to improve saturation estimates with this analysis method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3