Crosshole seismic tomography with cross-firing geometry

Author:

Rao Ying1,Wang Yanghua2,Chen Shumin3,Wang Jianmin3

Affiliation:

1. China University of Petroleum (Beijing), State Key Laboratory of Petroleum Resource & Prospecting, Beijing, China, and Centre for Reservoir Geophysics, Department of Earth Science and Engineering, Imperial College London, London, UK..

2. Centre for Reservoir Geophysics, Department of Earth Science and Engineering, Imperial College London, London, UK..

3. Daqing Oilfield Company Ltd., Research Institute of Exploration and Development, Daqing, China..

Abstract

We have developed a case study of crosshole seismic tomography with a cross-firing geometry in which seismic sources were placed in two vertical boreholes alternatingly and receiver arrays were placed in another vertical borehole. There are two crosshole seismic data sets in a conventional sense. These two data sets are used jointly in seismic tomography. Because the local sediment is dominated by periodic, flat, thin layers, there is seismic anisotropy with different velocities in the vertical and horizontal directions. The vertical transverse isotropy anisotropic effect is taken into account in inversion processing, which consists of three stages in sequence. First, isotropic traveltime tomography is used for estimating the maximum horizontal velocity. Then, anisotropic traveltime tomography is used to invert for the anisotropic parameter, which is the normalized difference between the maximum horizontal velocity and the maximum vertical velocity. Finally, anisotropic waveform tomography is implemented to refine the maximum horizontal velocity. The cross-firing acquisition geometry significantly improves the ray coverage and results in a relatively even distribution of the ray density in the study area between two boreholes. Consequently, joint inversion of two crosshole seismic data sets improves the resolution and increases the reliability of the velocity model reconstructed by tomography.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3