Estimation of acoustic macro models using a genetic full-waveform inversion: Applications to the Marmousi model

Author:

Sajeva Angelo1ORCID,Aleardi Mattia1,Stucchi Eusebio2,Bienati Nicola3,Mazzotti Alfredo1

Affiliation:

1. University of Pisa, Department of Earth Science, Pisa, Italy..

2. University of Milan, Department of Earth Science, Milano, Italy..

3. ENI, Upstream and Technical Services Division, San Donato Milanese, Milano, Italy..

Abstract

We have developed a stochastic full-waveform inversion that uses genetic algorithms (GA FWI) to estimate acoustic macro models of the P-wave velocity field. Stochastic methods such as GA severely suffer the curse of dimensionality, meaning that they require unaffordable computer resources for inverse problems with many unknowns and expensive forward modeling. To mitigate this issue, we have proposed a two-grid technique with a coarse grid to represent the subsurface for the GA inversion and a finer grid for the forward modeling. We have applied this procedure to invert synthetic acoustic data of the Marmousi model, and we have developed three different tests. The first two tests use a velocity model derived from standard stacking velocity analysis as prior information and differ only for the parameterization of the coarse grid. Their comparison indicates that a smart parameterization of the coarse grid may significantly improve the final result. The third test uses a linearly increasing 1D velocity model as prior information, a layer-stripping procedure, and a large number of model evaluations. All three tests return velocity models that fairly reproduce the long-wavelength structures of the Marmousi. First-break cycle skipping related to the seismograms of the final GA-FWI models is significantly reduced compared with that computed on the models used as prior information. Descent-based FWIs starting from final GA-FWI models yield velocity models with low and comparable model misfits and with an improved reconstruction of the structural details. The quality of the models obtained by GA FWI plus descent-based FWI is benchmarked against the models obtained by descent-based FWI started from a smoothed version of the Marmousi and started directly from the prior information models. Our results are promising and demonstrate the ability of the two-grid GA FWI to yield velocity models suitable as input to descent-based FWI.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference50 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3