Inversion-based interpretation of logging-while-drilling gamma-ray spectroscopy measurements

Author:

Ajayi Oyinkansola1,Torres-Verdín Carlos1,Preeg William E.2

Affiliation:

1. The University of Texas at Austin, Department of Petroleum and Geosystems Engineering, Austin, Texas, USA..

2. Private consultant, Austin, Texas, USA..

Abstract

Neutron-induced spectroscopy measurements are commonly used to quantify in situ elemental compositions of rocks from the processing of measured gamma-ray energy spectra. However, geometric effects on the measured spectroscopy logs, such as thin beds, dipping beds, and deviated well trajectories, can cause shoulder-bed averaging that compromises the assessment of the true layer elemental composition. We have developed an inversion-based interpretation method to evaluate layer elemental compositions from spectroscopy measurements acquired with a commercial 14-MeV pulsed-neutron logging-while-drilling spectroscopy tool. The algorithm is based on a new spectroscopy fast-forward simulation technique, and it estimates layer-by-layer elemental relative yields, weight concentrations, and their uncertainties. Calculations are performed with inelastic and capture gamma-ray spectroscopy measurements that arose from high- and low-energy neutron interactions, respectively. This strategy provides two sets of data that independently validate estimated elemental compositions and can ascertain chemical elements present in only one measurement mode. In laminated formations in which layer thicknesses are appreciably below the vertical resolution of the tool, it is impossible to quantify layer properties with inversion methods. We have therefore developed an additional interpretation method based on a spectroscopy mixing law to estimate elemental compositions within individual laminae. The new inversion-based interpretation methods were successfully verified with two challenging synthetic cases and implemented in two field cases with varying lithology and well trajectories. Our results found that the developed methods reduced shoulder-bed averaging effects on the measured spectroscopy logs by as much as a 0.4 yield fraction and a 0.17 weight fraction. Estimated elemental compositions with reduced shoulder-bed averaging effects improved the calculations in subsequent spectroscopy-based petrophysical interpretation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference37 articles.

1. Ajayi, O., C. Torres-Verdín, and W. E. Preeg, 2014, Rapid simulation and inversion-based interpretation of gamma ray spectroscopy logs in high-angle and horizontal wells: Presented at the SPWLA 55th Annual Logging Symposium, VVV.

2. Well Logging for Earth Scientists

3. Flaum, C., and G. Pirie, 1981, Determination of lithology from induced gamma-ray spectroscopy: Presented at the SPWLA 22nd Annual Logging Symposium, H.

4. Variance reduction techniques for improved derived elemental concentrations from fitting prompt neutron capture gamma ray spectra

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3