A synthetic study to assess the applicability of full-waveform inversion to infer snow stratigraphy from upward-looking ground-penetrating radar data

Author:

Schmid Lino1,Schweizer Jürg1,Bradford John2,Maurer Hansruedi3

Affiliation:

1. WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland..

2. Boise State University, Center for Geophysical Investigation of the Shallow Subsurface, Department of Geosciences, Boise, Idaho, USA..

3. ETH Zürich, Institute of Geophysics, Zürich, Switzerland..

Abstract

Snow stratigraphy and liquid water content are key contributing factors to avalanche formation. Upward-looking ground-penetrating radar (upGPR) systems allow nondestructive monitoring of the snowpack, but deriving density and liquid water content profiles is not yet possible based on the direct analysis of the reflection response. We have investigated the feasibility of deducing these quantities using full-waveform inversion (FWI) techniques applied to upGPR data. For that purpose, we have developed a frequency-domain FWI algorithm in which we additionally took advantage of time-domain features such as the arrival times of reflected waves. Our results indicated that FWI applied to upGPR data is generally feasible. More specifically, we could show that in the case of a dry snowpack, it is possible to derive snow densities and layer thicknesses if sufficient a priori information is available. In case of a wet snowpack, in which it also needs to be inverted for the liquid water content, the algorithm might fail, even if sufficient a priori information is available, particularly in the presence of realistic noise. Finally, we have investigated the capability of FWI to resolve thin layers that play a key role in snow stability evaluation. Our simulations indicate that layers with thicknesses well below the GPR wavelengths can be identified, but in the presence of significant liquid water, the thin-layer properties may be prone to inaccuracies. These results are encouraging and motivate applications to field data, but significant issues remain to be resolved, such as the determination of the generally unknown upGPR source function and identifying the optimal number of layers in the inversion models. Furthermore, a relatively high level of prior knowledge is required to let the algorithm converge. However, we feel these are not insurmountable and the new technology has significant potential to improve field data analysis.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3