Joint stochastic constraint of a large data set from a salt dome

Author:

Roberts Alan W.1,Hobbs Richard W.2,Goldstein Michael3,Moorkamp Max4,Jegen Marion5,Heincke Bjørn6

Affiliation:

1. Formerly Durham University, Department of Earth Sciences, Durham, UK, and Durham University, Department of Mathematics, Durham, UK; presently Geospatial Research Limited, Durham, UK..

2. Durham University, Department of Earth Sciences, Durham, UK..

3. Durham University, Department of Mathematics, Durham, UK..

4. Formerly GEOMAR, Kiel, Germany; presently University of Leicester, Department of Geology, Leicester, UK..

5. GEOMAR, Kiel, Germany..

6. Formerly GEOMAR, Kiel, Germany; presently GEUS, Department of Petrology and Economic Geology, Copenhagen, Denmark..

Abstract

Understanding the uncertainty associated with large joint geophysical surveys, such as 3D seismic, gravity, and magnetotelluric (MT) studies, is a challenge, conceptually and practically. By demonstrating the use of emulators, we have adopted a Monte Carlo forward screening scheme to globally test a prior model space for plausibility. This methodology means that the incorporation of all types of uncertainty is made conceptually straightforward, by designing an appropriate prior model space, upon which the results are dependent, from which to draw candidate models. We have tested the approach on a salt dome target, over which three data sets had been obtained; wide-angle seismic refraction, MT and gravity data. We have considered the data sets together using an empirically measured uncertain physical relationship connecting the three different model parameters: seismic velocity, density, and resistivity, and we have indicated the value of a joint approach, rather than considering individual parameter models. The results were probability density functions over the model parameters, together with a halite probability map. The emulators give a considerable speed advantage over running the full simulator codes, and we consider their use to have great potential in the development of geophysical statistical constraint methods.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3