Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses

Author:

Li Jianhui1,Farquharson Colin G.2,Hu Xiangyun3

Affiliation:

1. China University of Geosciences, Institute of Geophysics and Geomatics, Wuhan, Hubei, China; Memorial University of Newfoundland, Department of Earth Sciences, St. John’s, Newfoundland and Labrador, Canada; and China University of Mining & Technology, State Key Laboratory for GeoMechanics and Deep Underground Engineering, Xuzhou, Jiangsu, China..

2. Memorial University of Newfoundland, Department of Earth Sciences, St. John’s, Newfoundland and Labrador, Canada..

3. China University of Geosciences, Institute of Geophysics and Geomatics, Wuhan, Hubei, China..

Abstract

The inverse Laplace transform is one of the methods used to obtain time-domain electromagnetic (EM) responses in geophysics. The Gaver-Stehfest algorithm has so far been the most popular technique to compute the Laplace transform in the context of transient electromagnetics. However, the accuracy of the Gaver-Stehfest algorithm, even when using double-precision arithmetic, is relatively low at late times due to round-off errors. To overcome this issue, we have applied variable-precision arithmetic in the MATLAB computing environment to an implementation of the Gaver-Stehfest algorithm. This approach has proved to be effective in terms of improving accuracy, but it is computationally expensive. In addition, the Gaver-Stehfest algorithm is significantly problem dependent. Therefore, we have turned our attention to two other algorithms for computing inverse Laplace transforms, namely, the Euler and Talbot algorithms. Using as examples the responses for central-loop, fixed-loop, and horizontal electric dipole sources for homogeneous and layered mediums, these two algorithms, implemented using normal double-precision arithmetic, have been shown to provide more accurate results and to be less problem dependent than the standard Gaver-Stehfest algorithm. Furthermore, they have the capacity for yielding more accurate time-domain responses than the cosine and sine transforms for which the frequency-domain responses are obtained by interpolation between a limited number of explicitly computed frequency-domain responses. In addition, the Euler and Talbot algorithms have the potential of requiring fewer Laplace- or frequency-domain function evaluations than do the other transform methods commonly used to compute time-domain EM responses, and thus of providing a more efficient option.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3