Multichannel predictive deconvolution based on the fast iterative shrinkage-thresholding algorithm

Author:

Li Zhong-Xiao1,Li Zhen-Chun1,Lu Wen-Kai2

Affiliation:

1. China University of Petroleum (East China), School of Geosciences, Department of Geophysics, Qingdao, China..

2. Tsinghua University, Tsinghua National Laboratory for Information Science and Technology, State Key Laboratory of Intelligent Technology and Systems, Department of Automation, Beijing, China..

Abstract

Multichannel predictive deconvolution can accommodate the lateral variations of subsurface structures to some extent and better preserve primaries than can single-channel predictive deconvolution. To solve the 2D predictive filter, traditional multichannel predictive deconvolution uses the least-squares (LS) algorithm, which requires orthogonality between primaries and multiples. In areas where primaries and multiples overlap, traditional LS-based multichannel predictive deconvolution can cause distorted primaries and residual multiples. To avoid the orthogonality assumption required by the LS algorithm, the iterative reweighted LS (IRLS) algorithm and the fast iterative shrinkage-thresholding (FIST) algorithm can be used to solve the prediction filter using the [Formula: see text] norm. The FIST algorithm uses the shrinkage-thresholding operator to promote the sparsity of estimated primaries and solves the predictive filter with iterative steps. Compared with the IRLS algorithm, the FIST algorithm can reduce the computation burden effectively while achieving similar accuracy. We have used the FIST algorithm for multichannel predictive deconvolution using the [Formula: see text] norm. Compared with traditional FIST-based single-channel predictive deconvolution and LS-based multichannel predictive deconvolution, our method can better balance primary preservation and multiple removal. Tests using synthetic and field data sets proved the effectiveness of the proposed method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3