Frequency cycling for compensation of undesired off-resonance effects in surface nuclear magnetic resonance

Author:

Grombacher Denys1,Müller-Petke Mike2,Knight Rosemary1

Affiliation:

1. Stanford University, Department of Geophysics, Stanford, California, USA..

2. Leibniz Institute for Applied Geophysics, Hanover, Germany..

Abstract

To produce reliable estimates of aquifer properties using surface nuclear magnetic resonance (NMR), an accurate forward model is required. The standard surface NMR forward model assumes that excitation occurs through a process called on-resonance excitation, which occurs when the transmit frequency is set to the Larmor frequency. However, this condition is often difficult to satisfy in practice due to the challenge of accurately determining the Larmor frequency within the entire volume of investigation. As such, in situations where an undesired offset is present between the assumed and true Larmor frequency, the accuracy of the forward model is degraded. This is because the undesired offset leads to a condition called off-resonance excitation, which impacts the signal amplitude, phase, and spatial distribution in the subsurface, subsequently reducing the accuracy of surface NMR estimated aquifer properties. Our aim was to reduce the impact of an undesired offset between the assumed and true Larmor frequency to ensure an accurate forward model in the presence of an uncertain Larmor frequency estimate. We have developed a methodology where data are collected using two different transmit frequencies, each an equal magnitude above and below the assumed Larmor frequency. These data are combined, through a method we refer to as frequency cycling, in a manner that allow the component well-described by our estimate of the Larmor frequency to be stacked coherently, whereas the component related to the presence of an undesired offset is combined destructively. In synthetic and field studies, we have determined that frequency cycling is able to mitigate the influence of an undesired offset providing more accurate estimates of aquifer properties. Furthermore, the frequency-cycling method stabilized the complex inversion of surface NMR data, allowing advantages associated with complex inversion to be exploited.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3