Experimental study on the effects of fractures on elastic wave propagation in synthetic layered rocks

Author:

Li Tianyang1,Wang Ruihe1,Wang Zizhen1,Wang Yuzhong2

Affiliation:

1. China University of Petroleum, School of Petroleum Engineering, Qingdao, China..

2. No. 2 Oil Production Plant Huabei Oilfield Company, PetroChina, Bazhou, China..

Abstract

Fractures greatly increase the difficulty of oil and gas exploration and development in reservoirs consisting of interlayered carbonates and shales and increase the uncertainty of highly efficient development. The presence of fractures or layered media is also widely known to affect the elastic properties of rocks. The combined effects of fractures and layered media are still unknown. We have investigated the effects of fracture structure on wave propagation in interlayered carbonate and shale rocks using physical models based on wave theory and the similarity principle. We have designed and built two sets of layered physical models with randomly embedded predesigned vertically aligned fractures according to the control variate principle. We have measured the P- and S-wave velocities and attenuation and analyzed the effects of fracture porosity and aspect ratio (AR) on velocity, attenuation, and power spectral dimension of the P- and S-waves. The experimental results indicated that under conditions of low porosity ([Formula: see text]), Han’s empirical velocity-porosity relations and Wang’s attenuation-porosity relation combined with Wyllie’s time-average model are a good prediction for layered physical models with randomly embedded fractures. When the porosity is constant, the effect of different ARs on elastic wave properties can be described by a power law function. We have calculated the power spectrum fractal dimension [Formula: see text] of the transmitted signal in the frequency domain, which can supplement the S-wave splitting method for estimating the degree of anisotropy. The simple power law relation between the power spectrum fractal dimension of the P-waveform and fracture density suggests the possible use of P-waves for discriminating fracture density. The high precision and low error of this processing method give new ideas for rock anisotropy evaluation and fracture density prediction when only P-wave data are available.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3