P- and S-wave velocity models of shallow dry sand formations from surface wave multimodal inversion

Author:

Bergamo Paolo1,Socco Laura Valentina2

Affiliation:

1. Queen’s University Belfast, Belfast, UK..

2. Politecnico di Torino, Torino, Italy..

Abstract

Surficial formations composed of loose, dry granular materials constitute a challenging target for seismic characterization. They exhibit a peculiar seismic behavior, characterized by a nonlinear seismic velocity gradient with depth that follows a power-law relationship, which is a function of the effective stress. The P- and S-wave velocity profiles are then characterized by a power-law trend, and they can be defined by two power-law exponents [Formula: see text] and two power-law coefficients [Formula: see text]. In case of depth-independent Poisson’s ratio, the P-wave velocity profile can be defined using the [Formula: see text] power-law parameters and Poisson’s ratio. Because body wave investigation techniques (e.g., P-wave tomography) may perform ineffectively on such materials because of high attenuation, we addressed the potential of surface-wave method for a reliable seismic characterization of shallow formations of dry, uncompacted granular materials. We took into account the dependence of seismic wave velocity on effective pressure and performed a multimodal inversion of surface-wave data, which allowed the [Formula: see text] and [Formula: see text] profiles to be retrieved. The method requires the selection of multimodal dispersion curve points referring to surface-wave frequency components traveling within the granular media formation and their inversion for the S-wave power-law parameters and Poisson’s ratio. We have tested our method on a synthetic dispersion curve and applied it to a real data set. In both cases, the surficial layer was made of loose dry sand. The test on the synthetic data set confirmed the reliability of the proposed procedure because the thickness and the [Formula: see text], [Formula: see text] profiles of the sand layer were correctly estimated. For the real data, the outcomes were validated by other geophysical measurements conducted at the same site and they were in agreement with similar studies regarding loose sand formations.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3