Sobel filter for edge detection of hexagonally sampled 3D seismic data

Author:

Ashraf Haroon1,Mousa Wail A.1,Al Dossary Saleh2

Affiliation:

1. King Fahd University of Petroleum and Minerals, Electrical Engineering Department, Dhahran, Saudi Arabia..

2. Saudi Aramco, Exploration Application Services Department, Dhahran, Saudi Arabia..

Abstract

In today’s industry, automatic detection of geologic features such as faults and channels is a challenging problem when the quality of data is not good. Edge detection filters are generally applied for the purpose of locating such features. Until now, edge detection has been carried out on rectangularly sampled 3D seismic data. The computational cost of edge detection can be reduced by exploring other sampling approaches instead of the regular rectangular sampling commonly used. Hexagonal sampling is an alternative to rectangular sampling that requires 13.4% less samples for the same level of accuracy. The hexagonal approach is an efficient method of sampling with greater symmetry compared with the rectangular approach. Spiral architecture can be used to handle the hexagonally sampled seismic data. Spiral architecture is an attractive scheme for handling 2D images that enables processing 2D data as 1D data in addition to the inherent hexagonal sampling advantages. Thus, the savings in number of samples, greater symmetry, and efficient data handling capability makes hexagonal sampling an ideal choice for computationally exhaustive operations. For the first time to our knowledge, we have made an attempt to detect edges in hexagonally sampled seismic data using spiral architecture. We compared edge detection on rectangular and hexagonally sampled seismic data using 2D and 3D filters in rectangular and hexagonal domains. We determined that hexagonal processing results in exceptional computational savings, when compared with its rectangular processing counterpart.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3