Numerical evaluation of the transient acoustic waveform due to a point source in a fluid‐filled borehole

Author:

Tsang Leung1,Rader Dennis1

Affiliation:

1. Schlumberger-Doll Research Center, Ridgefield, CT

Abstract

A key measurement employed in oil well wireline logging is the acoustic wave traveltime over a specified formation interval, typically 1 ft. In the traditional measurement, only the compressional head wave is monitored, but for some time it has been obvious that there is significant additional information, such as the shear head wave arrival, in the received waveform. We describe two numerical methods for computing the profile and parameter dependence of the transient waveform based on a model of the acoustic logging problem consisting of a point source on the axis of a fluid‐filled cylindrical borehole. The response to this excitation is determined at a distance from the source, generally on the borehole axis. In the first of the two numerical methods, called “real axis integration”, the complete acoustic waveform is obtained. The second method, called “branch‐cut integration”, evaluates the first compressional and shear‐pseudo‐Rayleigh arrivals individually with much less computation time than the first method. The validity and accuracy of the two methods are demonstrated by their close agreement within appropriate time windows. It is also shown that the results from the ordinary asymptotic method that exist in the literature predict different behavior. The dependence of the transient arrivals on formation parameters is illustrated by various numerical results in both time and frequency domains.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3