Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution: Salt-flank imaging with transmitted P-to-S waves

Author:

Xiao Xiang12,Leaney W. Scott12

Affiliation:

1. Formerly University of Utah, Department of Geology and Geophysics, Salt Lake City, Utah, U.S.A.; presently Nexus Geoscience Inc., Sugar Land, Texas, U.S.A. .

2. Schlumberger Oilfield Services, Houston, Texas, U.S.A. .

Abstract

To avoid the defocusing effects of propagating waves through salt and overburden with an inaccurate overburden velocity model, we introduce a vertical seismic profiling (VSP) local elastic reverse-time-migration (RTM) method for salt-flank imaging by transmitted P-to-S waves. This method back-projects the transmitted PS waves using a local velocity model around the well until they are in phase with the back-projected PP waves at the salt boundaries. The merits of this method are that it does not require the complex overburden and salt-body velocities and it automatically accounts for source-side statics. In addition, the method accounts for kinematic and dynamic effects, including anisotropy, absorption, and all other unknown rock effects outside of this lo-cal subsalt velocity model. Numerical tests on an elastic salt model and offset 2D VSP data in the Gulf of Mexico, using a finite-difference time-domain staggered-grid RTM scheme, partly demonstrate the effectiveness of this method over interferometry PS-PP transmission migration and local acoustic RTM. Our method separates elastic wavefields to vector P- and S-wave velocity components at the trial image point and achieves better resolution than local acoustic RTM and interferometric transmission migration. The analytical formulas of migration resolution for local acoustic and elastic RTM show that the migration illumination is limited by data frequency and receiver aperture, and the spatial resolution is lower than standard poststack and prestack migration. This new method can image salt flanks as well as subsalt reflectors.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3