Seismic depth imaging with the Gabor transform

Author:

Ma Yongwang1,Margrave Gary F.1

Affiliation:

1. University of Calgary, Department of Geoscience, CREWES (Consortium for Research in Elastic Wave Exploration Seismology), Calgary, Alberta, Canada. .

Abstract

Wavefield extrapolation in depth, a vital component of wave-equation depth migration, is accomplished by repeatedly applying a mathematical operator that propagates the wavefield across a single depth step, thus creating a depth marching scheme. The phase-shift method of wavefield extrapolation is fast and stable; however, it can be cumbersome to adapt to lateral velocity variations. We address the extension of phase-shift extrapolation to lateral velocity variations by using a spatial Gabor transform instead of the normal Fourier transform. The Gabor transform, also known as the windowed Fourier transform, is applied to the lateral spatial coordinates as a windowed discrete Fourier transform where the entire set of windows is required to sum to unity. Within each window, a split-step Fourier phase shift is applied. The most novel element of our algorithm is an adaptive partitioning scheme that relates window width to lateral velocity gradient such that the estimated spatial positioning error is bounded below a threshold. The spatial positioning error is estimated by comparing the Gabor method to its mathematical limit, called the locally homogeneous approximation — a frequency-wavenumber-dependent phase shift that changes according to the local velocity at each position. The assumption of local homogeneity means this position-error estimate may not hold strictly for large scattering angles in strongly heterogeneous media. The performance of our algorithm is illustrated with imaging results from prestack depth migration of the Marmousi data set. With respect to a comparable space-frequency domain imaging method, the proposed method improves images while requiring roughly 50% more computing time.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3