Acoustic multipole sources in fluid‐filled boreholes

Author:

Kurkjian Andrew L.1,Chang Shu‐Kong1

Affiliation:

1. Schlumberger‐Doll Research, Old Quarry Road, Ridgefield, CT 06877-4108

Abstract

Acoustic well logging methods historically have been based on the excitation and reception of axisymmetric wave phenomena in a fluid‐filled wellbore. We consider the reception of nonsymmetric wave phenomena excited by acoustic multipole sources. The first three orders of multipoles are the monopole, dipole, and quadrupole, and we examine these particular sources in detail. Existing sonic tools make use of a monopole source, while more recently, both dipole and quadrupole sources have been explored. An exact frequency‐wavenumber domain representation of the acoustic field in the borehole due to a multipole source is formulated and numerical methods are used to compute synthetic space‐time domain waveforms. We consider wideband monopole, dipole, and quadrupole excitations with center frequencies of 1, 4, and 12 kHz, and treat both slow and fast formation models. Finally, we derive low‐frequency, far‐field asymptotic expressions for the monopole, dipole, and quadrupole waveforms. At frequencies such that the shear wavelength is on the order of the borehole diameter or less, the difference between the monopole, dipole, and quadrupole waveforms is primarily in the nature of the surface wave mode which they excite: the monopole excites a Stoneley, or tube mode; the dipole excites a flexural mode; and the quadrupole excites a screw mode. By comparison, the compressional and shear head waves and the trapped waveguide modes do not change as much as the order of the multipole is changed. At low frequencies, where the shear wavelength is much longer than the diameter of the hole, the monopole excites a dominating tube mode, while the dipole and quadrupole excites dominating shear waves. Low‐frequency asymptotic expressions for the waveforms agree well with the numerically computed waveforms.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3