Imaging and velocity estimation with depth‐focusing analysis

Author:

MacKay Scott1,Abma Ray2

Affiliation:

1. Allied Geophysical Laboratories, University of Houston

2. Western Geophysical, Houston, TX

Abstract

Prestack depth migration uses two imaging conditions, zero time and zero offset, during downward continuation to form a migrated depth section. When the migration velocities are exact, the two imaging conditions act in a complementary fashion to yield a focused image. When the migration velocities are in error, reflected energy collapses to zero offset at depths that are inconsistent with the zero‐time imaging condition. The result is a deteriorated seismic image. However, by interpreting the nonzero times at which focusing actually occurs, the migration velocities can be updated iteratively in a process called depth‐focusing analysis. To produce a well‐focused seismic image, the goal of depth‐focusing analysis must be the elimination of focusing errors; however, practical considerations can prevent this goal from being achieved. Therefore, to relax the sensitivity of the migrated image to focusing errors, we introduce a nonzero‐time imaging condition by extracting the data along the interpreted surface of focusing from the depth‐focusing analysis volume. This method, called focal‐surface imaging, estimates the results of prestack depth migration using the updated velocities. Depth‐focusing analysis is shown to be a robust approach to velocity estimation and imaging. Limitations arising from constant‐velocity and low‐dip approximations are reduced in the presence of increasing velocities with depth. Lateral velocity errors, sources of exaggerated focusing errors and diverging velocity solutions, can also be addressed by applying a damping factor to the interpreted depth errors. Velocity estimation and focal‐surface imgaging, using iterative prestack depth migration, were applied to a southern North Sea data set. Starting with a regional velocity function, the first iteration provided an updated velocity field that more accurately conformed to the known lithologies. The focal‐surface image, formed from the same iteration, contained significantly more focused energy than the conventional section formed by prestack depth migration. However, structural differences between the two sections indicated the need for another iteration of migration using the updated velocities. The second iteration indicated smaller velocity errors and enough similarity between the migrated section and the new focal‐surface image to indicate that further iterations were unnecessary.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3