Applications of median filtering to deconvolution, pulse estimation, and statistical editing of seismic data

Author:

Bednar J. Bee1

Affiliation:

1. Cities Service Company, Energy Resources Group, P.O. Box 3908, Tulsa, OK 74102

Abstract

Seismic exploration problems frequently require analysis of noisy data. Traditional processing removes or reduces noise effects by linear statistical filtering. This filtering process can be viewed as a weighted averaging with coefficients chosen to enhance the data information content. When the signal and noise components occupy separate spectral windows, or when the statistical properties of the noise are sufficiently understood, linear statistical filtering is an effective tool for data enhancement. When the noise properties are not well understood, or when the noise and signal occupy the same spectral window, linear or weighted averaging performs poorly as a signal enhancement process. One must look for alternative procedures to extract the desired information. As a nonlinear operation which is statistically similar to averaging, median filtering represents one potential alternative. This paper investigates the application of median filtering to several seismic data enhancement problems. A methodology for using median filtering as one step in cepstral deconvolution or seismic signature estimation is presented. The median filtering process is applied to statistical editing of acoustic impedance data and the removal of noise bursts from reflection data. The most surprising conclusion obtained from the empirical studies on synthetic data is that, in high‐noise situations, cepstral‐based median filtering appears to perform exceptionally well as a deconvolver but poorly as a signature estimator. For real data, the process is stable and, to the extent that the data follow the convolutional model, does a reasonable job at both pulse estimation and deconvolution.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3