Multiple prediction through inversion: A fully data‐driven concept for surface‐related multiple attenuation

Author:

Wang Yanghua1

Affiliation:

1. Imperial College London, Centre for Reservoir Geophysics, Department of Earth Science and Engineering, South Kensington, London SW7 2AZ, United Kingdom.

Abstract

This paper introduces a fully data‐driven concept, multiple prediction through inversion (MPI), for surface‐related multiple attenuation (SMA). It builds the multiple model not by spatial convolution, as in a conventional SMA, but by updating the attenuated multiple wavefield in the previous iteration to generate a multiple prediction for the new iteration, as is usually the case in an iterative inverse problem. Because MPI does not use spatial convolution, it is able to minimize the edge effect that appears in conventional SMA multiple prediction and to eliminate the need to synthesize near‐offset traces, required by a conventional scheme, so that it can deal with a seismic data set with missing near‐offset traces. The MPI concept also eliminates the need for an explicit surface operator, which is required by conventional SMA and is comprised of the inverse source signature and other effects. This method accounts implicitly for the spatial variation of the surface operator in multiple‐model building and attempts to predict multiples which are not only accurate kinematically but are also accurate in phase and amplitude.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3