Prediction of elastic properties using seismic prestack inversion and neural network analysis

Author:

Mohamed Islam A.1,El-Mowafy Hamed Z.2,Fathy Mohamed2

Affiliation:

1. Rashid Petroleum Company, Cairo, Egypt..

2. Al-Azhar University, Cairo, Egypt..

Abstract

The use of artificial intelligence algorithms to solve geophysical problems is a recent development. Neural network analysis is one of these algorithms. It uses the information from multiple wells and seismic data to train a neural network to predict properties away from the well control. Neural network analysis can significantly improve the seismic inversion result when the outputs of the inversion are used as external attributes in addition to regular seismic attributes for training the network. We found that integration of prestack inversion and neural network analysis can improve the characterization of a late Pliocene gas sandstone reservoir. For inversion, the input angle stacks was conditioned to match the theoretical amplitude-variation-with-offset response. The inversion was performed using a deterministic wavelet set. Neural network analysis was then used to enhance the [Formula: see text], [Formula: see text], and density volumes from the inversion. The improvement was confirmed by comparisons with logs from a blind well.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3