Hydrocarbon indicators on seismic data: Insights from poroviscoelastic modeling, amplitude, and frequency variation with offsets from the Drake Point gas field, Western Arctic Islands, Canada

Author:

Duchesne Mathieu J.1,Giroux Bernard2,Hu Kezhen3

Affiliation:

1. Geological Survey of Canada, Québec, Quebec City, Canada, and Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, Quebec City, Canada..

2. Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, Quebec City, Canada..

3. Geological Survey of Canada, Calgary, Alberta, Canada..

Abstract

The evaluation of drilling prospects is frequently based on seismic amplitude anomalies. To decipher “true” seismic prospects from “false” ones, we used poroviscoelastic (PVE) models, as opposed to other formalisms such as acoustic, elastic, viscoelastic, and poroelastic models, that provided a solution that takes into account solid and fluid attenuation mechanisms separately to model the earth’s response to the propagation of a seismic wavefield. Here, a PVE impedance modeling scheme was tested using seismic and well-log data collected on a conventional gas reservoir in the Canadian Arctic. Comparisons between seismic-to-well ties achieved using acoustic and PVE media indicated that the latter provided more realistic synthetic seismograms. Although prestack analysis revealed that the present lithological context was of class I amplitude variation with offset (AVO), the seismic signature observed was of class III AVO. Consequently, the increase in amplitude with offset was interpreted to be induced not by a lithological change (i.e., shale to sand) combined with a gas-charged interval, but rather by an increase in porosity within the sandstone reservoir itself where the gas has accumulated. Frequency variation with offset analysis using spectral decomposition, image low-frequency shadows on the far offsets attributed to the gas accumulation that were correlative with the AVO anomaly. This highlighted the importance of far offsets in anomalous amplitude and frequency events attributed to the occurrence of gas reservoirs observed on stacked data and that these events can be missed if seismic hydrocarbon indicators were solely investigated on stacked data. Finally, the method of analysis emphasized the importance of combining indirect arguments coming from the observation of prestack and stacked seismic data in the time and frequency domains for reducing risk to an acceptable level before a prospect can be drilled.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3