Long-offset time-lapse seismic: Tested on the Valhall LoFS data

Author:

Zadeh Hossein Mehdi12,Landrø Martin12,Barkved Olav Inge12

Affiliation:

1. Norwegian University of Science and Technology (NTNU), Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway..

2. BP Norway, Stavanger, Norway.

Abstract

Conventional time-lapse seismic has been less successful for stiff-rock reservoir monitoring, such as carbonates. This is mainly because of the negligible time-lapse changes in the seismic properties. Therefore, we propose to use long-offset time-lapse seismic as an alternative method to estimate small velocity changes. More specifically, we monitor the maximum amplitude offset that is beyond critical offset. The properties of the maximum amplitude offset are similar to critical offset, except that they appear for longer offsets and are frequency dependent. Increased frequency reduces the gap between this offset and the critical offset. We find that the maximum amplitude offset is a function of overburden and reservoir velocity and practically independent of density. This method requires a velocity increase across the interface that is to be analyzed. This criterion usually is satisfied for stiff-rock reservoirs. Also, by long-offset acquisition, we mean typically 1 to 2 km beyond the critical offset for typical depths. The method is tested on the Valhall chalk field in the North Sea. The predicted velocity change using this method is in-line with an independent acoustic impedance study. The velocity changes quantitatively match reasonably well with the synthetic data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3