Affiliation:
1. CGGVeritas, Calgary, Alberta, Canada. .
Abstract
Although 3D seismic data are being acquired in larger volumes than ever before, the spatial sampling of these volumes is not always adequate for certain seismic processes. This is especially true of marine and land wide-azimuth acquisitions, leading to the development of multidimensional data interpolation techniques. Simultaneous interpolation in all five seismic data dimensions (inline, crossline, offset, azimuth, and frequency) has great utility in predicting missing data with correct amplitude and phase variations. Although there are many techniques that can be implemented in five dimensions, this study focused on sparse Fourier reconstruction. The success of Fourier interpolation methods depends largely on two factors: (1) having efficient Fourier transform operators that permit the use of large multidimensional data windows and (2) constraining the spatial spectrum along dimensions where seismic amplitudes change slowly so that the sparseness and band limitation assumptions remain valid. Fourier reconstruction can be performed when enforcing a sparseness constraint on the 4D spatial spectrum obtained from frequency slices of five-dimensional windows. Binning spatial positions into a fine 4D grid facilitates the use of the FFT, which helps on the convergence of the inversion algorithm. This improves the results and computational efficiency. The 5D interpolation can successfully interpolate sparse data, improve AVO analysis, and reduce migration artifacts. Target geometries for optimal interpolation and regularization of land data can be classified in terms of whether they preserve the original data and whether they are designed to achieve surface or subsurface consistency.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
215 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献