Five-dimensional interpolation: Recovering from acquisition constraints

Author:

Trad Daniel1

Affiliation:

1. CGGVeritas, Calgary, Alberta, Canada. .

Abstract

Although 3D seismic data are being acquired in larger volumes than ever before, the spatial sampling of these volumes is not always adequate for certain seismic processes. This is especially true of marine and land wide-azimuth acquisitions, leading to the development of multidimensional data interpolation techniques. Simultaneous interpolation in all five seismic data dimensions (inline, crossline, offset, azimuth, and frequency) has great utility in predicting missing data with correct amplitude and phase variations. Although there are many techniques that can be implemented in five dimensions, this study focused on sparse Fourier reconstruction. The success of Fourier interpolation methods depends largely on two factors: (1) having efficient Fourier transform operators that permit the use of large multidimensional data windows and (2) constraining the spatial spectrum along dimensions where seismic amplitudes change slowly so that the sparseness and band limitation assumptions remain valid. Fourier reconstruction can be performed when enforcing a sparseness constraint on the 4D spatial spectrum obtained from frequency slices of five-dimensional windows. Binning spatial positions into a fine 4D grid facilitates the use of the FFT, which helps on the convergence of the inversion algorithm. This improves the results and computational efficiency. The 5D interpolation can successfully interpolate sparse data, improve AVO analysis, and reduce migration artifacts. Target geometries for optimal interpolation and regularization of land data can be classified in terms of whether they preserve the original data and whether they are designed to achieve surface or subsurface consistency.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3