Affiliation:
1. BP Amoco Production Co., 501 Westlake Park Blvd., Houston, Texas 77079.
Abstract
Converted‐wave processing is more critically dependent on physical assumptions concerning rock velocities than is pure‐mode processing, because not only moveout but also the offset of the imaged point itself depend upon the physical parameters of the medium. Hence, unrealistic assumptions of homogeneity and isotropy are more critical than for pure‐mode propagation, where the image‐point offset is determined geometrically rather than physically. In layered anisotropic media, an effective velocity ratio [Formula: see text] (where [Formula: see text] is the ratio of average vertical velocities and γ2is the corresponding ratio of short‐spread moveout velocities) governs most of the behavior of the conversion‐point offset. These ratios can be constructed from P-wave and converted‐wave data if an approximate correlation is established between corresponding reflection events. Acquisition designs based naively on γ0instead of [Formula: see text] can result in suboptimal data collection. Computer programs that implement algorithms for isotropic homogeneous media can be forced to treat layered anisotropic media, sometimes with good precision, with the simple provision of [Formula: see text] as input for a velocity ratio function. However, simple closed‐form expressions permit hyperbolic and posthyperbolic moveout removal and computation of conversion‐point offset without these restrictive assumptions. In these equations, vertical traveltime is preferred (over depth) as an independent variable, since the determination of the depth is imprecise in the presence of polar anisotropy and may be postponed until later in the flow. If the subsurface has lateral variability and/or azimuthal anisotropy, then the converted‐wave data are not invariant under the exchange of source and receiver positions; hence, a split‐spread gather may have asymmetric moveout. Particularly in 3-D surveys, ignoring this diodic feature of the converted‐wave velocity field may lead to imaging errors.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Reference21 articles.
1. Aki, K., and Richards, P., 1980, Quantitative seismology: Freeman Press.
2. AN ANALYSIS OF STACKING, RMS, AVERAGE, AND INTERVAL VELOCITIES OVER A HORIZONTALLY LAYERED GROUND *
3. Alfaraj, M., 1993, Transformation to zero offset for mode‐converted waves: Ph.D. thesis, Col. School of Mines.
4. Velocity analysis for transversely isotropic media
5. Eisner’s reciprocity paradox and its resolution
Cited by
192 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献