Affiliation:
1. NORSAR, Research & Development and Applied Seismic Modeling, Kjeller, Norway. .
2. Formerly NORSAR, Kjeller, Norway; presently Statoil Research Centre, Postuttak, Trondheim, Norway. .
Abstract
Ray-based seismic modeling methods can be applied at various stages of the exploration and production process. The standard ray method has several advantages, e.g., computational efficiency and the possibility of simulating propagation of elementary waves. As a high-frequency approximation, the method also has a number of limitations, particularly with respect to a lack of amplitude reliability in the presence of rapid changes of the model functions representing elastic parameters and interfaces. Given the objective of improving the applicability of the standard ray method, we present a strategy that does not require specific extension to finite frequencies. Instead, we define each ray-based process as an element of a system that, as a composite process, is able to obtain better results than the ray-based process applied alone. Other elements of the composite process can be finite-difference modeling or numerical solutions for surface and volume integrals, which are basic constituents of Kirchhoff modeling and imaging. We also include among the process elements recently developed techniques for simulating the migration amplitude on a target reflector and in a local volume, e.g., a reservoir zone. The model is decomposed according to its complexity into volume elements, surface elements, or a combination. The composite process consists of a specified interaction between process elements and model elements, which fits well with the philosophy of modern software design. Model elements that will be exposed to ray-tracing algorithms may need appropriate preparation, e.g., smoothing and resampling. We demonstrate specifically, in a tutorial example, that simulating the seismic response from a reflector by ray-based composite processes can yield better results than applying standard ray tracing alone.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献