Affiliation:
1. University of Calgary, Department of Geoscience, Calgary, Alberta, Canada..
Abstract
Wavenumber, group velocity, phase velocity, and frequency-dependent attenuation characterize the propagation of surface waves in dispersive, attenuating media. We use a mathematical model based on the generalized [Formula: see text] transform to simultaneously estimate these characteristic parameters for later use in joint inversion for near-surface shear wave velocity. We use a scaling factor in the generalized S transform to enable the application of the method in a highly dispersive medium. We introduce a cost function in the [Formula: see text]-domain to estimate an optimum value for the scaling factor. We also use the cost function to generalize the application of the method for noisy data, especially data with a low signal-to-noise ratio at low frequencies. In that case, the estimated wavenumber is perturbed. As a solution, we estimate wavenumber perturbation by minimizing the cost function, using Simulated Annealing. We use synthetic and real data to show the efficiency of the method for the estimation of the propagation parameters of highly dispersive and noisy media.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献