Rock physics analysis and time-lapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks

Author:

Vanorio Tiziana1,Nur Amos1,Ebert Yael1

Affiliation:

1. Stanford University, Department of Geophysics, Stanford, California, USA..

Abstract

The fundamental concept of time-lapse seismic monitoring is that changes in physical parameters—such as saturation, pore fluid pressure, temperature, and stress—affect rock and fluid properties, which in turn alter the seismic velocity and density. Increasingly, however, time-lapse seismic monitoring is called upon to quantify subsurface changes due in part to chemical reactions between injected fluids and the host rocks. This study springs from a series of laboratory experiments and high-resolution images assessing the changes in microstructure, transport, and seismic properties of fluid-saturated sandstones and carbonates injected with [Formula: see text]. Results show that injecting [Formula: see text] into a brine-rock system induces chemo-mechanical mechanisms that permanently change the rock frame. Injecting [Formula: see text] into brine-saturated-sandstones induces salt precipitation primarily at grain contacts and within small pore throats. In rocks with porosity lower than 10%, salt precipitation reduces permeability and increases P- and S-wave velocities of the dry rock frame. On the other hand, injecting [Formula: see text]-rich water into micritic carbonates induces dissolution of the microcrystalline matrix, leading to porosity enhancement and chemo-mechanical compaction under pressure. In this situation, the elastic moduli of the dry rock frame decrease. The results in these two scenarios illustrate that the time-lapse seismic response of chemically stimulated systems cannot be modeled as a pure fluid-substitution problem. A first set of empirical relationships links the time-variant effects of injection to the elastic properties of the rock frame using laboratory velocity measurements and advanced imaging.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3