Petro-electric modeling for CSEM reservoir characterization and monitoring

Author:

Shahin Alireza1234,Key Kerry1234,Stoffa Paul1234,Tatham Robert1234

Affiliation:

1. Formerly University of Texas at Austin, Institute for Geophysics, Austin, Texas, USA. Presently BP North America Inc., Reservoir Geophysics R&D, Houston, Texas, USA..

2. Scripps Institution of Oceanography, University of California, San Diego, California, USA..

3. University of Texas, Institute for Geophysics, Austin, Texas, USA..

4. Department of Geological Sciences, University of Texas at Austin Jackson School of Geosciences, Austin, Texas, USA.

Abstract

The controlled-source electromagnetic (CSEM) method has been successfully applied to petroleum exploration; however, less effort has been made to highlight the applicability of this technique for reservoir monitoring. This work appraises the ability of time-lapse CSEM data to detect the changes in fluid saturation during water flooding into an oil reservoir. We simulated a poorly consolidated shaly sandstone reservoir based on a prograding near-shore depositional environment. Starting with an effective porosity model simulated by Gaussian geostatistics, dispersed clay and dual water models were efficiently combined with other well-known theoretical and experimental petrophysical correlations to consistently simulate reservoir properties. The constructed reservoir model was subjected to numerical simulation of multiphase fluid flow to predict the spatial distributions of fluid pressure and saturation. A geologically consistent rock physics model and a modified Archie’s equation for shaly sandstones were then used to simulate the electrical resistivity, showing up to 60% decreases in electrical resistivity due to changes in water saturation during 10 years of production. Time-lapse CSEM data were simulated at three production time steps (zero, five, and ten years) using a 2.5D parallel adaptive finite element algorithm. Analysis of the time-lapse signal in the simulated multicomponent and multifrequency data set demonstrates that a detectable time-lapse signal after five years and a strong time-lapse signal after ten years of water flooding are attainable using current CSEM technology.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3