Optimal dynamic rock-fluid physics template validated by petroelastic reservoir modeling

Author:

Shahin Alireza1234,Tatham Robert1234,Stoffa Paul1234,Spikes Kyle1234

Affiliation:

1. Formerly University of Texas, Institute for Geophysics, Austin, Texas, U.S.A.; presently BP North America, Reservoir Geophysics R&D, Houston, Texas, U.S.A..

2. University of Texas, Jackson School of Geological Sciences, Austin, Texas, U.S.A..

3. University of Texas, Institute for Geophysics, Austin, Texas, U.S.A..

4. University of Texas, Geological Sciences, Austin, Texas, U.S.A..

Abstract

Separation of fluid pore pressure and saturation using inverted time-lapse seismic attributes is a mandatory task for field development. Multiple pairs of inversion-derived attributes can be used in a crossplot domain. We performed a sensitivity analysis to determine an optimal crossplot, and the validity of the separation is tested with a comprehensive petroelastic reservoir model. We simulated a poorly consolidated shaly sandstone reservoir based on a prograding near-shore depositional environment. A model of effective porosity is first simulated by Gaussian geostatistics. Well-known theoretical and experimental petrophysical correlations were then efficiently combined to consistently simulate reservoir properties. Next, the reservoir model was subjected to numerical simulation of multiphase fluid flow to predict the spatial distributions of fluid saturation and pressure. A geologically consistent rock physics model was then used to simulate the inverted seismic attributes. Finally, we conducted a sensitivity analysis of seismic attributes and their crossplots as a tool to discriminate the effect of pressure and saturation. The sensitivity analysis demonstrates that crossplotting of acoustic impedance versus shear impedance should be the most stable way to separate saturation and pressure changes compared to other crossplots (e.g., velocity ratio versus acoustic impedance). We also demonstrated that the saturation and pressure patterns were detected in most of the time-lapse scenarios; however, the saturation pattern is more likely detectable because the percentage in pressure change is often lower than that of the saturation change. Imperfections in saturation and pressure patterns exist in various forms, and they can be explained by the interaction of saturation and pressure, the diffusive nature of pressure, and rapid change in pressure due to production operations.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3