Affiliation:
1. BP America Inc., Houston, Texas. .
Abstract
Three-dimensional finite-difference modeling studies conducted over subsalt structures in the deepwater Gulf of Mexico confirm the deficiencies of narrow-azimuth towed-streamer surveys and predict significant improvement in image quality with wide-azimuth methods. Finite-difference modeling has provided important design parameters for two separate approaches for wide-azimuth surveys: ocean-bottom receivers distributed in a sparse grid on the ocean floor coupled with a dense grid of source points on the surface, and a wide-azimuth towed-streamer method using multiple seismic vessels in a novel configuration. These two methods complement each other. Ocean-bottom receivers may be used effectively where field development has resulted in many obstacles that might interfere with towed-streamer methods, where the required size of the 3D survey is not too extensive, or where very long offsets are required for all azimuths. Towed-streamer methods are more efficient for large surveys, and key parameters in the wide-azimuth towed-streamer method can be varied to provide a wide range of cost versus data-quality options to make the method suitable for application in scenarios ranging from exploration to field development.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献