Deep learning-based artificial bandwidth extension: Training on ultrasparse OBN to enhance towed-streamer FWI

Author:

Aharchaou Mehdi1,Baumstein Anatoly1

Affiliation:

1. ExxonMobil Upstream Integrated Solutions, Spring, Texas, USA..

Abstract

The lack of seismic low frequencies in towed-streamer data is known to have an outsized detrimental effect on advanced velocity model building techniques such as full-waveform inversion (FWI). Since seabed acquisition records ultralow frequencies (1–4 Hz) with high signal-to-noise ratio, this presents an opportunity to learn, in a supervised machine learning fashion, a bandwidth extension function to enrich towed-streamer data with low frequencies. We use recent advances in training deep neural networks to develop a novel method for learning low-frequency reconstruction from an ultrasparse set of ocean-bottom nodes (OBNs). This bandwidth extension is tested on two large field data sets (from an OBN survey and a wide-azimuth towed-steamer survey) acquired over a complex-shaped salt region in the Gulf of Mexico. The reconstructed low frequencies, although not perfect, enable FWI to more effectively correct the shape of salt bodies and result in improved subsalt imaging. Well-tie analysis shows an improvement in phase stability around the wellbore and a fit to within half a cycle at reservoir level. This work links together towed-streamer and seabed acquisitions, providing a cost-effective solution to help offshore seismic exploration with higher-quality low frequencies.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3