Affiliation:
1. ExxonMobil Upstream Integrated Solutions, Spring, Texas, USA..
2. ExxonMobil Canada Energy, St. John's, Canada..
Abstract
Recent demands to reduce turnaround times and expedite investment decisions in seismic exploration have invited new ways to process and interpret seismic data. Among these ways is a more integrated collaboration between seismic processors and geologist interpreters aiming to build preliminary geologic models for early business impact. A key aspect has been quick and streamlined delivery of clean high-fidelity 3D seismic images via postmigration filtering capabilities. We present a machine learning-based example of such a capability built on recent advances in deep learning systems. In particular, we leverage the power of Siamese neural networks, a new class of neural networks that is powerful at learning discriminative features. Our novel adaptation, edge-aware filtering, employs a deep Siamese network that ranks similarity between seismic image patches. Once the network is trained, we capitalize on the learned features and self-similarity property of seismic images to achieve within-image stacking power endowed with edge awareness. The method generalizes well to new data sets due to the few-shot learning ability of Siamese networks. Furthermore, the learning-based framework can be extended to a variety of noise types in 3D seismic data. Using a convolutional architecture, we demonstrate on three field data sets that the learned representations lead to superior filtering performance compared to structure-oriented filtering. We examine both filtering quality and ease of application in our analysis. Then, we discuss the potential of edge-aware filtering as a data conditioning tool for rapid structural interpretation.
Publisher
Society of Exploration Geophysicists
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献