3D ultra shallow seismic imaging of buried pipe using dense receiver array: Practical and theoretical considerations

Author:

Bachrach Ran1,Reshef Moshe1

Affiliation:

1. Tel Aviv University, Dept. of Geophysics and Planetary Sciences, Israel. .

Abstract

Direct 3D imaging of a [Formula: see text] pipe, buried at a depth of [Formula: see text], using portable dense receiver array shows that small objects associated with large impedance contrast can be precisely imaged. Detailed velocity analysis applied to backscattered wavefield from small buried objects provides resolution of less than [Formula: see text]. Comparison of backscattered wavefield observations to analytical solutions show a generally good match. Theoretical calculations also show that the object can be detected with wavelengths much larger than its size due to the large contrast associated with its hollow shape. Dense spatial sampling is needed to capture the energy emitted from the scattering object and successfully focus it by diffraction imaging. Portable dense receiver array can provide a cost-effective solution for such tasks.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3