Mapping thin resistors and hydrocarbons with marine EM methods, Part II — Modeling and analysis in 3D

Author:

Weiss Chester J.12,Constable Steven12

Affiliation:

1. Sandia National Laboratories, Geophysics Department, P. O. Box 5800 MS-0750, Albuquerque, New Mexico 87185.

2. Scripps Institution of Oceanography, Institute for Geophysics and Planetary Physics, La Jolla, California 92093.

Abstract

The electromagnetic fields surrounding a thin, subseabed resistive disk in response to a deep-towed, time-harmonic electric dipole antenna are investigated using a newly developed 3D Cartesian, staggered-grid modeling algorithm. We demonstrate that finite-difference and finite-volume methods for solving the governing curl-curl equation yield identical, complex-symmetric coefficient matrices for the resulting [Formula: see text] linear system of equations. However, the finite-volume approach has an advantage in that it naturally admits quadrature integration methods for accurate representation of highly compact or exponentially varying source terms constituting the right side of the resulting linear system of equations. This linear system is solved using a coupled two-term recurrence, quasi-minimal residual algorithm that doesnot require explicit storage of the coefficient matrix, thus reducing storage costs from [Formula: see text] to [Formula: see text] complex, double-precision words with no decrease in computational performance. The disk model serves as a generalized representation of any number of resistive targets in the marine environment, including basaltic sills, carbonates, and stratigraphic hydrocarbon traps. We show that spatial variations in electromagnetic phase computed over the target are sensitive to the disk boundaries and depth, thus providing a useful complement to the usual amplitude-versus-offset analysis. Furthermore, we estimate through the calculation of Fréchet sensitivity kernels those regions of the 3D model which have the greatest effect on seafloor electric fields for a given source/receiver configuration. The results show that conductivity variations within the resistive disk have a stronger influence on the observed signal than do variations in the surrounding sediment conductivity at depth.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3