SaltSeg: Automatic 3D salt segmentation using a deep convolutional neural network

Author:

Shi Yunzhi1,Wu Xinming1,Fomel Sergey1

Affiliation:

1. The University of Texas at Austin, Bureau of Economic Geology, John A. and Katherine G. Jackson School of Geosciences, University Station, Box X, Austin, Texas 78713-8924, USA.(corresponding author); .

Abstract

Salt boundary interpretation is important for the understanding of salt tectonics and velocity model building for seismic migration. Conventional methods consist of computing salt attributes and extracting salt boundaries. We have formulated the problem as 3D image segmentation and evaluated an efficient approach based on deep convolutional neural networks (CNNs) with an encoder-decoder architecture. To train the model, we design a data generator that extracts randomly positioned subvolumes from large-scale 3D training data set followed by data augmentation, then feed a large number of subvolumes into the network while using salt/nonsalt binary labels generated by thresholding the velocity model as ground truth labels. We test the model on validation data sets and compare the blind test predictions with the ground truth. Our results indicate that our method is capable of automatically capturing subtle salt features from the 3D seismic image with less or no need for manual input. We further test the model on a field example to indicate the generalization of this deep CNN method across different data sets.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference36 articles.

1. Automated fault detection without seismic processing

2. A new approach for salt dome detection using a 3D multidirectional edge detector

3. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

4. Boureau, Y.L., J. Ponce, and Y. LeCun, 2010, A theoretical analysis of feature pooling in visual recognition: Proceedings of the 27th International Conference on Machine Learning, 111–118.

5. Csáji, B. C., 2001, Approximation with artificial neural networks: M.Sc. thesis, Etvs Lornd University.

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3