Lithogeomorphological facies analysis of Upper Miocene coal-prone fluviodeltaic reservoirs, Northern Malay Basin

Author:

Babikir Ismailalwali A. M.1,Salim Ahmed M. A.1,Ghosh Deva P.1

Affiliation:

1. Universiti Teknologi PETRONAS (UTP), Institute of Hydrocarbon Recovery, Centre of Excellence in Subsurface Seismic Imaging & Hydrocarbon Prediction (CSI), Department of Geosciences, 32610 Bandar Seri Iskandar, Malaysia..

Abstract

The Group E stratigraphic unit is a significant gas producer in the Northern Malay Basin. However, due to the thinly bedded nature of the sandstone reservoirs, thick shale, and abundant coal beds, accurate seismic attributes interpretation of lithology and fluid prediction has been a daunting task. To address this problem, we have conducted an integrated seismic sedimentology workflow using spectral decomposition, color blending, waveform classification, prestack seismic inversion, and stratal slicing to characterize the lithogeomorphological facies of the coal-bearing reservoirs. On spectral decomposition and waveform classification maps, we clearly identified depositional elements such as the distributary channel, distributary mouth bar, subaqueous levee, and interdistributary fill. We computed the elastic properties through prestack seismic inversion to obtain good lithology discrimination between coal and gas-charged sandstone. Both lithologies are characterized by low acoustic impedance, but the compressional to shear velocity ratio ([Formula: see text]) of coal is high compared to gas-charged sandstone. The current interpretation indicated that the Group E interval was deposited in a delta plain setting. The varying flow directions of the distributary channels in the area support the hypothesis that describes the Malay Basin during Miocene time as a narrow gulf, connected to an open sea to the south and flanked by deltas and fan deltas.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3