Comparative analysis of shale reservoir characteristics in the Wufeng-Longmaxi (O3w-S1l) and Niutitang (Є1n) Formations: A case study of wells JY1 and TX1 in the southeastern Sichuan Basin and its neighboring areas, southwestern China

Author:

Wang Ruyue1,Hu Zongquan1,Sun Chuanxiang1,Liu Zhongbao1,Zhang Chenchen1,Gao Bo1,Du Wei1,Zhao Jianhua2,Tang Wenhao3

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing, China, SINOPEC, Petroleum Exploration and Production Research Institute, Beijing, China, and SINOPEC Key Laboratory of Shale Gas/Oil Exploration and Production, Beijing, China..

2. China University of Petroleum (East China), School of Geosciences, Qingdao, China..

3. Hebei Scoilmic Petroleum Technology Co. Ltd., Cangzhou, China..

Abstract

A systematic comparative analysis of shale reservoir characteristics of the Wufeng-Longmaxi (O3 w-S1 l) and Niutitang (Є1 n) Formations in southeastern Sichuan Basin and its neighboring areas was conducted with respect to mineralogy, organic geochemistry, pore structure, methane sorption, brittleness, and fractures. Results indicate that (1) organic matter (OM)-hosted pores that are hundreds of nanometers to micrometers in size in the Longmaxi shale are well-developed in migrated OM rather than in the in situ OM, and they are the dominant reservoir spaces. Furthermore, the total organic carbon (TOC), brittleness, organic pores, and bedding fractures have good synergistic development relationships. However, there are fewer OM-hosted pores in the Niutitang shale; they are smaller in size, usually less than 30 nm, and have a more complicated pore structure. The intergranular pores in cataclastic organic-inorganic mineral fragments are the dominant reservoir spaces in the Niutitang shale and are coupled with stronger methane sorption and desorption capacities. (2) The piecewise correlation between TOC and brittleness indicates the significant differences in pore and fracture characteristics. When the TOC [Formula: see text], the TOC, brittleness, organic/inorganic pores, and fractures synergistically develop; when the TOC [Formula: see text], even though the increase in ductility reduces the number of fractures, the lower cohesive strength, internal friction angle, and weaker surfaces of interlayer fractures and cataclastic minerals promote the development of slip fractures, which significantly improves the fracture effectiveness and reservoir spaces for free and absorbed shale gas. (3) The Longmaxi, Wufeng, and Niutitang shales formed and evolved in different evolutionary stages. With the evolution of hydrocarbon generation, diagenesis, tectonic deformation, and pressure, the size and proportion of OM-hosted pores gradually decrease. At the same time, the complexity of the pore-fracture structure, the methane adsorption/desorption capacity, and the proportion of inorganic pores and fractures increase.

Funder

National Science and Technology Major Project of the Ministry of Science and Technology of the People’s Republic of China

National Natural Science Foundation of China

SINOPEC Science and Technology Project

Foundation of State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3