Applying machine learning to 3D seismic image denoising and enhancement

Author:

Wang Enning1,Nealon Jeff1

Affiliation:

1. Chevron Energy Technology Company, Houston, Texas, USA..

Abstract

We have trained a supervised deep 3D convolutional neural network (CNN) on marine seismic images for poststack structural seismic image enhancement and noise attenuation. Rather than adding artificial noise to training inputs, the difference in noise levels between the training inputs and labels was created by shot density differences. This design enables the trained CNN to mimic the results and power of stacking to specifically target random and coherent migration artifacts while enhancing low-amplitude reflections. We used field seismic from multiple Gulf of Mexico surveys to train the CNN and the SEG Advanced Modeling (SEAM) phase I synthetic data to evaluate the trained network. The diverse geologic features in the training data are needed to avoid overfitting. The processed outputs of the trained neural network are much cleaner than the inputs, and they highlight geologic structures for easier interpretation. Different scales of geologic structures, from high-resolution faults and diffractors to deep subsalt sediments, are well-preserved by the deep neural network. The trained network can be applied on either prestack gathers or poststack images. The approach is easy to implement and straightforward to parameterize, and it has proven to be an effective and flexible production tool for post-migration data conditioning.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3