Determination of thermal properties and formation temperature from borehole thermal recovery data

Author:

Lee Tien‐Chang1,Duchkov A. D.2,Morozov S. G.2

Affiliation:

1. University of California, Department of Earth Sciences, Riverside, California 92521.

2. Institute of Geophysics, Siberian Branch of Russian Academy of Sciences, Prosp. Akad. Koptyuga 3, Novosibirsk, 630090 Russia.

Abstract

Thermal recovery in boreholes cooled by circulation of drilling mud has been modeled for estimating formation temperature and thermal conductivity. Coupled with a finite‐element simulation of heat conduction, inverse modeling for the desired parameters starts with a genetic algorithm that feeds initial estimates of model parameters to an iterative quasi‐linear inversion scheme. In addition to using the rms misfit between the computed and observed borehole temperatures, the results are assessed by comparing or constraining the model formation temperature with a value obtained conventionally from an asymptotic temperature–time relation for a steady line source. The model conductivity is further evaluated for equality with a conductivity value, which is estimated through simulation of heat exchange between the formation and circulating mud. Test results on synthetic data and two sets of highly noisy borehole data from Lake Baikal in Russia indicate that the two equality criteria in temperature and conductivity are achievable. Multiple runs of GA‐IM are used to find mean parameter values and their uncertainties. The resultant model conductivity values are consistent with those measured in cores with a needle‐probe method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3