Generalization of Gassmann equations for porous media saturated with a solid material

Author:

Ciz Radim1,Shapiro Serge A.1

Affiliation:

1. Freie Universität Berlin, Fachrichtung Geophysik, Berlin, Germany.

Abstract

Gassmann equations predict effective elastic properties of an isotropic homogeneous bulk rock frame filled with a fluid. This theory has been generalized for an anisotropic porous frame by Brown and Korringa’s equations. Here, we develop a new model for effective elastic properties of porous rocks — a generalization of Brown and Korringa’s and Gassmann equations for a solid infill of the pore space. We derive the elastic tensor of a solid-saturated porous rock considering small deformations of the rock skeleton and the pore infill material upon loading them with the confining and pore-space stresses. In the case of isotropic material, the solution reduces to two generalized Gassmann equations for the bulk and shear moduli. The applicability of the new model is tested by independent numerical simulations performed on the microscale by finite-difference and finite-element methods. The results show very good agreement between the new theory and the numerical simulations. The generalized Gass-mann model introduces a new heuristic parameter, characterizing the elastic properties of average deformation of the pore-filling solid material. In many cases, these elastic moduli can be substituted by the elastic parameters of the infill grain material. They can also represent a proper viscoelastic model of the pore-filling material. Knowledge of the effective elastic properties for such a situation is required, for example, when predicting seismic velocities in some heavy oil reservoirs, where a highly viscous material fills the pores. The classical Gassmann fluid substitution is inapplicable for a configuration in which the fluid behaves as a quasi-solid.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3