Subsalt imaging improvement possibilities through a combination of FWI and reflection FWI

Author:

Peng Chao1,Wang Minshen1,Chazalnoel Nicolas1,Gomes Adriano1

Affiliation:

1. CGG.

Abstract

Despite continuous improvements in seismic acquisition and processing technology, imaging under salt remains challenging, specifically because of the difficulty in updating complex salt geometries and subsalt velocity. Synthetic studies show that when certain conditions are met, full-waveform inversion (FWI) can recover very complex velocity models, including the geometry of the salt and the subsalt velocity. Unfortunately, currently available seismic field data fall short of meeting the requirements needed to replicate what can be achieved on synthetic data. We first use a wide-azimuth data set from the Mexican side of the Gulf of Mexico (GOM) to show how FWI can improve imaging in the subsalt. In addition to utilizing the diving-wave energy to derive a reliable model in the shallow sediment overburden, we use reflection FWI (RFWI) to update the velocity model in the deep area. RFWI utilizes the low-wavenumber components of the FWI gradient associated with waves reflected in the model, which makes it possible to circumvent the well-known penetration-depth limitation of FWI and the shortcomings of traditional tomography-based methods. This is achieved by alternately using the high-wavenumber and low-wavenumber components of the FWI gradient to update density and velocity models, respectively. We then use an ultralong-offset, full-azimuth data set from the U.S. side of the GOM to show that, with more suitable data, FWI and RFWI can be combined to recover the velocity in and around complex salt bodies, providing significant uplift to subsalt images.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3