A robust integral equation solution for electromagnetic scattering by a thin plate in conductive media

Author:

Walker P. W.1,West G. F.2

Affiliation:

1. Aerodat Ltd., 3883 Nashua Drive, Mississauga, Ontario, Canada

2. Department of Physics, University of Toronto, Toronto, Ontario, Canada

Abstract

An integral equation solution for electromagnetic (EM) scattering by a thin plate robustly models scattering in either perfectly resistive, very resistive, or conducting host media. Because the solution is not restricted to modeling certain ranges of host conductivity, it can be used to model scattering over the large ranges in conductivity encountered in geophysics. The solution is developed around a pair of coupled integral equations for the scattering distributions on the plate. In one equation, the scattering distribution is the scalar potential set up by the scattered charge distribution. In the other, it is the component of the scattered magnetic field perpendicular to the plate. The equations are solved numerically using the Galerkin method with simple polynomial basis functions. To find the fields scattered by the conductor, the scattered current density is first calculated from the scalar potential and the magnetic field. The scattered fields can then be found by integrating over the scattered current density. To test the solution, we model horizontal loop EM responses with our solution and compare the results with those from two established integral equation solutions. One of these solutions models pure induction and is used to test our solution when the host is perfectly resistive. Agreement with this solution is very good. Comparisons with the other solution, an electric field integral equation, tests our solution when the host medium is conductive. Agreement with the latter solution is good where induction is not too strong: i.e., where the electric‐field solution is known to work well. Our solution therefore can accurately model EM scattering by a plate in a host medium with any conductivity.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3