An evaluation of electromagnetic methods in the presence of geologic noise

Author:

Eaton Perry A.1,Hohmann Gerald W.1

Affiliation:

1. Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112

Abstract

An important element of electromagnetic (EM) prospecting is survey design; numerical modeling algorithms may be used to calculate signal‐to‐geologic‐noise (S/N) ratios to compare different survey configurations and measured responses quantitatively. Our models consist of a prismatic three‐dimensional (3-D) target in a conductive half‐space which may contain an overburden conductor; the models are energized by a time‐varying current transmitted in a loop of wire. The signal is the scattered or anomalous response of the target, while the geologic noise is either the response of the half‐space or the anomalous response of the overburden conductor. For typical loop sizes in exploration, the coincident‐loop configuration has a relatively high S/N ratio and thus a relatively high capability to resolve the target in the case of half‐space noise. Measurements made with the horizontal‐loop, moving‐coil configuration can be just as effective if the coil separation is one and one‐half to two times the depth of burial of the target and the transmitting and receiving coils are on opposite sides of the target. For coil positions on one side of the target, the S/N ratio decreases with increasing separation. The advantage in resolving power provided by the coincident loop’s superior S/N ratio diminishes as the size of the loop increases. For the case of noise due to the overburden conductor, the horizontal‐loop configuration with a large coil separation is optimal. If the depth of the target is unknown, the fixed‐loop, roving‐receiver configuration is useful for detecting the target but poor in resolving its depth because its S/N ratio is the least sensitive to the depth. With the fixed‐loop configuration, galvanic effects enhance the detectability of the target in a conductive half‐space, but inhibit detection if an overburden conductor is present. Regarding the S/N ratio, there does not appear to be any advantage in measuring the step response of a 3-D target in a conductive environment versus measuring the impulse response. The shapes of their respective S/N anomalies are essentially the same and the maximum impulse S/N ratio is 10 to 30 percent larger than the maximum step S/N ratio, though it occurs later in time by a factor of about 1.7. Although transient S/N ratios for a 3-D target in a conductive host reach a maximum value and then decrease with increasing time, harmonic S/N ratios do not necessarily reach a maximum value at an intermediate frequency. For all three survey configurations and both types of noise, target depths, and half‐space conductivities studied here, maximum transient S/N ratios are larger than harmonic S/N ratios. Peak step S/N ratios are 30 to 50 percent larger than corresponding in‐phase ratios in the case of half‐space noise, and several times larger in the case of the overburden conductor. A phase rotation of the target’s response due to the conductive host appears to amplify the quadrature S/N ratio relative to the in‐phase S/N ratio. However, in‐phase S/N ratios are always much larger than quadrature S/N ratios over the range of host resistivities used in this study.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-2D inversion of surface large fixed-loop transient electromagnetic sounding data;Journal of Geophysics and Engineering;2024-02-21

2. 3D electromagnetic modeling of graphitic faults in the Athabasca Basin using a finite-volume time-domain approach with unstructured grids;GEOPHYSICS;2021-09-24

3. Development and Prospect of Transient Electromagnetic Method;Migration Imaging of the Transient Electromagnetic Method;2016-10-16

4. Analysis of the near-source error in TEM due to the dipole hypothesis;Journal of Applied Geophysics;2015-05

5. Joint conductivity-depth imaging for fixed-wing electromagnetic data Bx and Bz;International Workshop and Gravity, Electrical & Magnetic Methods and their Applications, Chenghu, China, 19-22 April 2015;2015-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3