Estimating deep S-wave velocity structure in the Los Angeles Basin using a passive surface-wave method

Author:

Hayashi Koichi1,Martin Antony2,Hatayama Ken3,Kobayashi Takayuki4

Affiliation:

1. Geometrics

2. GEOVision

3. National Research Institute of Fire and Disaster

4. OYO Corporation USA

Abstract

This article summarizes a passive surface-wave method that uses only two sensors and its application to the estimation of deep S-wave velocity structure. Three-dimensional S-wave velocity structure to a depth of several kilometers has a large effect on long-period ground motion in tectonic basins, such as the Los Angeles (LA) Basin. Recent studies of long-period ground motion in the LA Basin (e.g., Hatayama and Kalkan, 2012) show that observed ground motion in some areas cannot be explained by the S-wave velocity models in current use. Most studies of basin velocity structure rely on geologic information, surface and borehole geophysical data, and observed earthquake records to deduce or measure seismic velocities. Geophysical data and seismic stations commonly used for velocity analysis are sparsely distributed and most well data are too shallow to characterize deep S-wave velocity structure. To establish more accurate basin velocity structure, there is a need for more densely distributed deep S-wave velocity data.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3