Carbonate reservoirs dominated by secondary storage space: Key issues and technical strategy

Author:

Liu Lifeng1,Sun Sam Zandong1,Xie Huiwen2,Zhang Yan3

Affiliation:

1. China University of Petroleum (Beijing).

2. Tarim Oilfield Company (CNPC).

3. Research Institute of Petroleum Exploration and Development (CNPC).

Abstract

Carbonate reservoirs of the Tarim Basin in China are buried deeply, with strong later diagenesis, and seldom are controlled by geologic facies. The effective storage spaces are mainly dissolution caves and fractures with few primary pores. Fluid distribution in the reservoir is extremely complicated. All these characteristics make it a world-class challenge for oil and gas exploration and production. Conventional poststack methods ignore the complexity of the reservoir medium with low accuracy of prediction results, by which the location of the dissolution cave is determined roughly. Only faults and fracture zones can be described to a certain degree instead of quantifying the fracture detection. Aiming at the key problems of the complex carbonate reservoirs in the Tarim Basin, a series of techniques has been developed to improve the successful rate of reservoir prediction, including the following aspects: the wide-azimuth and high-density data-acquisition technique to improve the quality of the original seismic data; a series of migration techniques including prestack reverse time migration; and amplitude-preserved Q migration to improve the quality of seismic gathers and the imaging precision with the matching precision of AVO gathers. The target reservoir data dominant frequency increased by more than 15% and by nearly 20 Hz. In addition, the effective DEM-Gassmann rock-physics model is proposed for velocity prediction, by which relative error of estimated shear-wave velocity reaches to less than 5%. Furthermore, an advanced inversion algorithm is introduced to improve the accuracy of extracted elastic information. By using new prestack inversion and frequency-dependent AVO inversion, the tie rate of the dissolution-cave reservoir and fluid prediction increased by more than 15%. Furthermore, the fracture-prediction tie rate can be enhanced by 20% through limited-azimuth anisotropic inversion, on the basis of which the quantitative identification of fracture fluid for actual seismic data can be realized.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seismic Wave Field Anomaly Identification of Ultra-Deep Heterogeneous Fractured-Vuggy Reservoirs: A Case Study in Tarim Basin, China;Applied Sciences;2021-12-12

2. Fine identification of karst cave based on GST method;SEG 2017 Workshop: Carbonate Reservoir E&P Workshop, Chengdu, China, 22-24 October 2017;2017-10-24

3. Diffraction Imaging and Modeling and Seismic Modeling Complete Session;SEG Technical Program Expanded Abstracts 2017;2017-08-17

4. Complex carbonate reservoir characterization using diffraction-imaging data set;SEG Technical Program Expanded Abstracts 2017;2017-08-17

5. Interpretation II Complete Session;SEG Technical Program Expanded Abstracts 2016;2016-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3