3D surface-related multiple elimination: Data reconstruction and application to field data

Author:

Baumstein Anatoly1,Hadidi Mohamed T.1

Affiliation:

1. ExxonMobil Upstream Research Company, P.O. Box 2189, Houston, Texas 77252-2189.

Abstract

The wide success of 2D surface-related multiple elimination (SRME) in attenuating complex multiples in many cases has spurred efforts to apply the method in three dimensions. However, application of 3D SRME to conventional marine data is often impeded by severe crossline aliasing characteristic of marine acquisition geometries. We propose to overcome this limitation using a dip-moveout (DMO)-based procedure consisting of the following steps: resorting the data into common offsets to improve crossline sampling, performing DMO to eliminate azimuth variations in the common-offset domain, and efficiently implementing inverse shot-record DMO to reconstruct densely sampled shot records required for 3D SRME to predict multiples correctly. We use a field data example to demonstrate that the proposed shot reconstruction procedure leads to kinematically accurate reconstruction of primaries but may not be able to simultaneously position multiples correctly. The mispositioning of multiples becomes a problem when second- and higher-order multiples must be predicted. We propose to resolve this difficulty by using a layer-stripping approach to multiple prediction. Alternatively, an approximate algorithm that relies on adaptive subtraction to compensate for inaccurate positioning of predicted multiples can be used. Application of the latter approach is illustrated with a field data example, and its performance is evaluated quantitatively through a measurement of S/N ratio improvement. We demonstrate that a DMO-based implementation of 3D SRME outperforms conventional 2D SRME and can accurately predict and attenuate complex 3D multiples.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3