Some influences of stratigraphy and structure on reservoir stress orientation

Author:

Bruno Michael S.1,Winterstein Don F.2

Affiliation:

1. Terralog Technologies, 332 E. Foothill Blvd., Arcadia, CA 91006

2. Chevron Petroleum Technology Co., P.O. Box 446, La Habra, CA 90633-0446

Abstract

The azimuth of maximum horizontal stress in a reservoir can vary significantly with depth and with position on a subsurface structure. We present and discuss evidence from field data for such variation and demonstrate both analytically and with finite‐element modeling how such changes might take place. Under boundary conditions of uniform far‐field displacement, changes in stratigraphic layering can reorient the principal stress direction if the formation is intrinsically anisotropic. If the formation stiffness is lower perpendicular to bedding than parallel to bedding (as is often the case in layered geologic media), an increase in dip will reduce the component of compressive stress in the dip azimuth direction. Folds can reorient principal stresses because flexural strain varies with depth and position. Compressive stress perpendicular to a fold axis increases with depth at the crest of an anticline and decreases with depth at the limb. When the regional stress anisotropy is weak, this change in stress magnitude can reorient the local principal stress directions. Numerical simulations of such effects gave results consistent with changes in stress orientation at the Cymric and Lost Hills oil fields in California as observed via shear‐wave polarization analyses and tiltmeter surveys of hydraulic fracturing. Knowledge of such variation of stress direction with depth and structural position is critical for drilling, completions, hydraulic fracture, and well pattern designs.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3