Walk‐away VSP using drill noise as a source

Author:

Haldorsen Jacob B. U.1,Miller Douglas E.2,Walsh John J.3

Affiliation:

1. Geco‐Prakla, Bucholzerstrasse 100, D 30655 Hannover, Germany

2. Schlumberger‐Doll Research, Old Quarry Road, Ridgefield, CT 06877-4108

3. Schlumberger Well Services, 1325 S. Dairy Ashford, Suite 350, Houston, TX 77077

Abstract

We describe a method for extracting and deconvolving a signal generated by a drill bit and collected by an array of surface geophones. The drill‐noise signature is reduced to an effective impulse by means of a multichannel Wiener deconvolution technique, producing a walk‐away reverse vertical seismic profile (VSP) sampled almost continuously in depth. We show how the multichannel technique accounts for noise and for internal drill‐string reflections, automatically limiting the deconvolved data to frequencies containing significant energy. We have acquired and processed a data set from a well in Germany while drilling at a depth of almost 4000 m. The subsurface image derived from these data compares well with corresponding images from a 3-D surface seismic survey, a zero‐offset VSP survey, and a walk‐away VSP survey acquired using conventional wireline techniques. The effective bandwidth of the deconvolved drill‐noise data is comparable to the bandwidth of surface seismic data but significantly smaller than what can be achieved with wireline VSP techniques. Although the processing algorithm does not require the use of sensors mounted on the drill string, these sensors provide a very economic way to compress the data. The sensors on the drill string were also used for accurate timing of the deconvolved drill‐noise data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3